• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:彭来湖,万璐璐,李建强,袁嫣红,王伟华.基于改进灰狼算法的印刷包装车间动态调度方法[J].软件工程,2023,26(2):13-18.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进灰狼算法的印刷包装车间动态调度方法
彭来湖1,2,万璐璐1,李建强3,袁嫣红1,王伟华1
(1.浙江理工大学,浙江 杭州 310000;
2.浙江理工大学龙港研究院,浙江 温州 325000;
3.浙江大学,浙江 杭州 310000)
laihup@zstu.edu.cn; luluw27@163.com; wzcnljq@126.com; yyh@zstu.edu.cn; wwhjiushiwo@163.com
摘 要: 针对机器故障和紧急订单两种动态事件对印刷包装车间调度方案产生干扰的问题,设计了以最大完工时间、机器负荷、机器总能耗为目标的车间动态调度多目标优化模型。针对灰狼算法种群多样性差、后期收敛速度慢、易陷入局部最优的缺点,提出了一种改进灰狼算法(Improved Gray Wolf Optimization, IGWO),并进行案例仿真实验。实验结果表明,出现机器故障和紧急订单的情况时,与传统调度方案相比,所提方法分别缩短了2.74%和2.05%的最大完工时间,节省了3.42%和3.04%的机器总能耗,并减少了1.20%和1.24%的机器负荷。
关键词: 印刷包装车间;动态调度;灰狼算法;多目标优化
中图分类号: TP278    文献标识码: A
Dynamic Scheduling Method of Printing and Packaging Workshop based on Improved Grey Wolf Optimization
PENG Laihu1,2, WAN Lulu1, LI Jianqiang3, YUAN Yanhong1, WANG Weihua1
( 1.Zhejiang Sci -Tech University, Hangzhou 310000, China;
2.Research Institute of Zhejiang Sci -Tech University in Longgang, Wenzhou 325000, China;
3.Zhejiang University, Hangzhou 310000, China)
laihup@zstu.edu.cn; luluw27@163.com; wzcnljq@126.com; yyh@zstu.edu.cn; wwhjiushiwo@163.com
Abstract: In order to solve the problem that two dynamic events, machine failure and emergency order, interfere with the scheduling scheme of the printing and packaging workshop, this paper proposes to design a multi-objective optimization model for dynamic scheduling of the workshop with the objectives of maximum completion time, machine load and total machine energy consumption. Aiming at the disadvantages of the Grey Wolf algorithm, such as poor population diversity, slow convergence speed in the later stage, and easy to fall into local optimum, this paper proposes an Improved Grey Wolf Algorithm (IGWO), and case simulation experiments are carried out. The experimental results show that in the case of machine failure and emergency order, compared with the traditional scheduling scheme, the proposed method shortens the maximum completion time by 2.74 % and 2.05 %, saves the total machine energy consumption by 3.42 % and 3.04 %, and reduces the machine load by 1.20 % and 1.24 %, respectively.
Keywords: printing and packaging workshop; dynamic scheduling; Grey Wolf algorithm; multi-objective optimization


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫