• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:宣 畅.基于优化后的内核极限学习机的短期风力发电功率预测[J].软件工程,2022,25(4):39-46.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于优化后的内核极限学习机的短期风力发电功率预测
宣 畅
(浙江工商大学萨塞克斯人工智能学院,浙江 杭州 310018)
xuan_chang@qq.com
摘 要: 为提高短期风力发电功率预测的精度,经过对比选择了内核极限学习机(Kernel Extreme Learning Machine,KELM)预测模型的原始模型,对该模型的内部参数进行研究,选择了多元宇宙优化算法(Multi-Verse Optimizer, MVO)对其参数进行优化。还提出用鲸鱼优化算法(Whale Optimization Algorithm, WOA)来给MOV初始化种群,以使MVO算法更不容易陷入局部最优,从而有着更好的求解能力。通过此预测模型进行发电功率预测,获得一个均方根误差(RMSE)值为0.0032、平均预测误差为0.00033的预测结果,最后进行对比实验验证其具有较好的预测效果。
关键词: 发电量预测;多元宇宙优化算法;鲸鱼优化算法;内核极限学习机
中图分类号: TP301    文献标识码: A
Short-term Wind Power Prediction based on Optimized Kernel Extreme Learning Machine
XUAN Chang
(Sussex School of Artificial Intelligence, Zhejiang Gongshang University, Hangzhou 310018, China)
xuan_chang@qq.com
Abstract: In order to improve the accuracy of short-term wind power prediction, this paper proposes to use the original model of Kernel Extreme Learning Machine (KELM) prediction model and study its internal parameters after comparison. Multi-Verse Optimizer (MVO) is selected to optimize its parameters. This paper also proposes to use Whale Optimization Algorithm (WOA) to initialize MOV population, so that MVO is much less likely to fall into local optimum, and thus it has better solving ability. The proposed prediction model is used to predict a power generation, and obtain a prediction result of RMSE value of 0.0032 and average prediction error of 0.00033. Finally, a comparative experiment verifies its good prediction effect.
Keywords: power generation prediction; multi-verse optimizer; whale optimization algorithm; kernel extreme learning machine


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫