• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:刘珊珊.大数据中基于混合协同过滤的动态用户个性化推荐[J].软件工程,2019,22(3):16-19.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
大数据中基于混合协同过滤的动态用户个性化推荐
刘珊珊
(广州华南商贸职业学院,广东 广州 510650)
摘 要: 为了提高大数据中动态用户个性化推荐的准确性和效率,采用基于混合协同过滤的方法来完成用户感 兴趣数据的筛选,从而实现个性化推荐。先将用户数据及项目数据通过协同过滤算法来完成建模并评分,然后结合 XGBoost模型的树形结构和正则学习的特点进行预测评分,接着将两种算法混合来求解最优目标函数,得到候选的推荐 数据集合。最后通过实例仿真,混合算法精确度高,在大数据平台有较强的适用性。
关键词: 大数据;协同过滤;XGBoost;个性化推荐;准确率
中图分类号: TP399    文献标识码: A
Personalized Recommendation for Dynamic Users Based on Hybrid Collaborative Filtering in Big Data
LIU Shanshan
( South China Vocational College of Commerce and Trade, Guangzhou 510650, China)
Abstract: In order to improve the accuracy and efficiency of personalized recommendation for dynamic users in big data,a hybrid collaborative filtering method is used to filter the data of interest to achieve personalized recommendation. Firstly,user data and project data are modeled and scored by collaborative filtering algorithm,then predicted and scored by combining the tree structure of XGBoost model and the characteristics of regular learning.Then the two algorithms are mixed to solve the optimal objective function,and candidate recommended data set is obtained.Experiments show that the hybrid collaborative filtering recommendation algorithm has high accuracy and strong applicability in big data platforms.
Keywords: big data;collaborative filtering;XGBoost;personalized recommendation;accuracy


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫