• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:李广创,程良伦.基于深度强化学习的机械臂避障路径规划研究[J].软件工程,2019,22(3):12-15.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于深度强化学习的机械臂避障路径规划研究
李广创,程良伦
(广东工业大学自动化学院,广东 广州 525000)
摘 要: 为了解决现有的机械臂焊接系统调整动作的难度大,缺乏灵活性的问题,本文采用了深度强化学习算法 来解决机械臂的路径规划问题;该方法使用一个三层的DNN网络,输入为机械臂的状态信息,输出为机械臂的运动关 节角度,通过离线训练,机械臂能够自行训练出一条接近于最优的运动轨迹,能够成功地避开障碍物到达目标点;仿真 在一个三自由度点焊机器人的模拟平台上进行,仿真实验表明,采用深度强化学习技术的机械臂能为焊接机械臂规划出 一条无碰撞的路径,具有较强的避障能力。
关键词: 机械臂;强化学习;碰撞检测;路径规划
中图分类号: TP391.9    文献标识码: A
基金项目: 本文系广东省应用型科技研发专项基金项目“复杂构件的智能焊接机器人研发与产业化”(项目编号:2015B090922013).
Research on Obstacle Avoidance Path Planning of the Mechanical Arm Based on Deep Reinforcement Learning
LI Guangchuang,CHEN Lianglun
( College of Automation, Guangdong University of Technology, Guangzhou 525000, China)
Abstract: In order to solve the difficulty of adjusting the existing mechanical arm welding system and the lack of flexibility,this paper adopts a deep reinforcement learning algorithm to solve the path planning problem of the mechanical arm;the method uses a three-layer DNN network with the input of mechanical state information and the output of the joint angle of the arm.Through offline training,the mechanical arm can be trained to move a nearly optimal motion trajectory and successfully avoid obstacles to reach the target point;the simulation is carried out in a three-degree-of-freedom welding robot simulation platform.The simulation experiment shows that the mechanical arm with deep reinforcement learning technology can plan a collision-free path for the welding mechanical arm and has strong obstacle avoidance ability
Keywords: mechanical arm;reinforcement learning;collision detection;path planning


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫