• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:段淳耀,赵 霞,程 鸿.基于改进YOLOv8的百合地杂草分类识别[J].软件工程,2025,28(2):46-51.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进YOLOv8的百合地杂草分类识别
段淳耀1,赵 霞1,程 鸿2
(1.甘肃农业大学信息科学技术学院,甘肃 兰州 730070;
2.甘肃省农业科学院蔬菜研究所,甘肃 兰州 730070)
1271266519@qq.com; 58892778@qq.com; chenjn@yeah.net
摘 要: 为了提高农业自动化杂草检测的效率和准确性,提出了一种基于改进YOLOv8(You Only Look Once version8)的百合地杂草分类识别方法。针对百合地杂草形态多样、颜色特征复杂且区分度低的难题,引入了TransNext聚合注意力模块和DCNv2(DeformableConvNetV2)注意力机制,优化了YOLOv8-n模型的特征提取和目标识别性能。通过实施数据增强策略,显著地提升了模型的泛化能力和识别准确性。实验结果表明,改进后的模型在自建数据集上的准确率达到90.1%,相比于原始YOLOv8模型的准确率提高了6百分点,充分展现了其在复杂非结构化背景下进行杂草分类的潜力和应用价值。
关键词: YOLOv8;杂草识别;深度学习;目标分类
中图分类号: TP391    文献标识码: A
基金项目: 自然科学基金-甘肃省科技计划资助(24JRRA656);2022年横向课题:农产品物资销售模式的数据统计分析(loonG20220201)
WeedClassificationandRecognitiononLilyFieldsBasedonImprovedYOLOv8
DUAN Chunyao1, ZHAO Xia1, CHEN Hong2
(1.College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
2.Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China)
1271266519@qq.com; 58892778@qq.com; chenjn@yeah.net
Abstract: In order to improve the efficiency and accuracy of automated weed detection in agriculture, this paper proposes a weed classification and recognition method based on an improved YOLOv8 (You Only Look Once version 8). To meet the challenges of diverse morphology, complex color features, and low distinguishability of lily field weeds, TransNext aggregation attention module and DCNv2 (Deformable ConvNet V2) attention mechanism are introduced to optimize the feature extraction and object recognition performance of the YOLOv8-n model. By implementing a data augmentation strategy, the generalization ability and recognition accuracy of the model are significantly enhanced. Experimental results show that the accuracy of the improved model on the self-built dataset reaches 90.1%, which is 6 percentage points higher than that of the original YOLOv8 model. This fully demonstrates its potential and application value in weed classification under complex unstructured backgrounds.
Keywords: YOLOv8; weed recognition; deep learning; object classification.


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫