• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:张渊杰,沈 洋,许 浩,包艳霞,应 震.基于少量数据集的三维点云生成模型[J].软件工程,2024,27(11):69-74.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于少量数据集的三维点云生成模型
张渊杰1, 沈 洋1,2, 许 浩2, 包艳霞2,3,4, 应 震2
(1.浙江理工大学信息科学与工程学院, 浙江 杭州 310018;
2.丽水学院数学与计算机学院, 浙江 丽水 323000;
3.浙江掌信传媒科技有限公司, 浙江 丽水 323000;
4.浙江聚新自动化设备有限公司, 浙江 丽水 323000)
630512163@qq.com; tlsheny@126.com; oah_ux@126.com; 82240849@qq.com; 470712367@qq.com
摘 要: 针对生成对抗网络(GAN)需要大量训练数据及点云数据稀缺且获取难度大的问题,提出一种基于少量数据集的三维点云生成模型。该模型首先通过重采样和水平旋转的方法实现数据增强,使第一级网络能够生成具有多样性的低分辨率点云;其次通过确保低分辨率点云与高分辨率点云之间的对应关系,实现点云的超分辨率生成;最后实现生成具有多样性的高分辨率点云。实验结果表明,在ShapeNet Part(ShapeNet Part Segmentation Dataset)数据集上,该模型的JS散度相较于Tree-GAN的JS散度下降了0.416,证明其性能优于Tree-GAN。
关键词: GAN;少量点云数据;重采样;数据增强;超分辨率
中图分类号: TP391    文献标识码: A
基金项目: 浙江省自然科学基金项目(LY21F02004);丽水市公益性技术应用研究计划项目(2022GYX12)
3D Point Cloud Generation Model Based on a Small Number of Dataset
ZHANG Yuanjie1, SHEN Yang1,2, XU Hao2, BAO Yanxia2,3,4, YING Zhen2
(1.School o f In f ormation Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2.School of Mathematics and Computer, Lishui University, Lishui 323000, China;
3.Zhejiang Zhangxin Media Technology Co., Ltd., Lishui 323000, China;
4.Zhejiang Juxin Automation Equipment Co., Ltd., Lishui 323000, China)

630512163@qq.com; tlsheny@126.com; oah_ux@126.com; 82240849@qq.com; 470712367@qq.com
Abstract: Aiming at the challenges that Generative Adversarial Network(GAN)requires large training datasets and the scarcity and difficulty of acquiring point cloud data,this paper proposes a 3D point cloud generation model based on a small number of datasets. This model first employs resampling and horizontal rotation techniques for data augmentation, enabling the first-level network to generate diverse low-resolution point clouds. Secondly, by ensuring the correspondence between low-resolution and high-resolution point clouds, the model achieves super-resolution generation of point clouds. Finally, it generates diverse high-resolution point clouds. The experimental results show that on the ShapeNet Part Segmentation Dataset, the JS divergence of the proposed model decreases by 0.416 compared to that of the Tree-GAN, demonstrating its superior performance.
Keywords: GAN; a small amount of point cloud data; resampling; data enhancement; super-resolution


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫