• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:邱家杰,何利力,郑军红.基于TextCNN 与多头注意力机制增强xDeepFM 的互联网营销活动参与预测研究[J].软件工程,2024,27(10):54-59.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于TextCNN 与多头注意力机制增强xDeepFM 的互联网营销活动参与预测研究
邱家杰, 何利力, 郑军红
(浙江理工大学计算机科学与技术学院, 浙江 杭州 310018)
qiujiajie1998918@163.com; llhe@zju.edu.cn; zdzhengjh@sohu.com
摘 要: 在当前的互联网营销环境中,多数模型尚未深入分析用户特征及用户行为的复杂性。对此,文章提出一种基于文本卷积神经网络(TextCNN)与多头注意力机制增强的xDeepFM(eXtreme Deep Factorization Machine)模型,即xDTCMAFM。首先,利用TextCNN高效地从文本数据中提取关键特征;其次,通过多头注意力机制进行不同子空间的特征提取;最后,使用xDeepFM模型实现深度显隐特征的交叉融合。实验表明,在两个互联网营销活动数据集上,该模型的AUC值分别达到了69.09%和72.98%,表现出了较好的性能,与xDeepFM等流行模型及融合注意力机制的改进模型相比均有一定提升。
关键词: 深度学习;多头注意力机制;TextCNN;xDeepFM;用户行为预测
中图分类号: TP183    文献标识码: A
基金项目: 浙江省重点研发“尖兵”攻关计划项目(2023C01119)
Research on Participation Prediction of Internet Marketing Activities Based on TextCNN and Enhanced xDeepFM with Multi-head Attention Mechanism
QIU Jiajie, HE Lili, ZHENG Junhong
(School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)
qiujiajie1998918@163.com; llhe@zju.edu.cn; zdzhengjh@sohu.com
Abstract: In the current internet marketing environment, most models have not deeply analyzed the complexity of user characteristics and behaviors. In this regard, the paper proposes an xDTCMAFM model based on Text Convolutional Neural Network (TextCNN) and an enhanced eXtreme Deep Factorization Machine (xDeepFM) with a mult-i head attention mechanism. First, TextCNN efficiently extracts key features from textual data. Second, a multihead attention mechanism is employed for feature extraction in different subspaces. Finally, the xDeepFM model is used to achieve the cross-fusion of deep explicit and implicit features. Experiments show that on two internet marketing activity datasets, the proposed model achieves AUC values of 69.09% and 72.98% ,respectively, demonstrating better performance compared to popular models such as xDeepFM and the improved models that incorporate attention mechanisms.
Keywords: deep learning; multi-head attention mechanism; TextCNN; xDeepFM; user behavior prediction


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫