• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:束艾静,张艳超.基于改进YOLOv8的轻量化杂草检测模型[J].软件工程,2024,27(10):18-22.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进YOLOv8的轻量化杂草检测模型
束艾静, 张艳超
(浙江理工大学信息科学与工程学院, 浙江 杭州 310000)
202130605274@mails.zstu.edu.cn; yczhang@zstu.edu.cn
摘 要: 为了适应智能农业的发展需求,并解决杂草检测过程中常见的效率低和可靠性不足的问题,文章提出一种基于改进YOLOv8(You Only Look Once)算法的轻量化高性能杂草检测模型。基于Ghost Conv(Ghost卷积)设计了全新的轻量化C3Ghost(Cross Stage Partial Network)模块以取代C2f(CSPDarknet53 to 2-Stage FPN),此外在模型的Neck部分引入CBAM(Convolutional Block Attention Module)注意力机制模块。通过构建专门的杂草数据集检测模型性能,发现该改进模型在杂草检测任务中的mAP-0.5达到了90.5%,mAP-0.5∶0.9评价标准达到54.4%。与官方发布的YOLOv8-s模型相比,分别提高了0.8%和0.3%,改进后的模型参数量减少了46.18%,计算量降低了42.81%。以上结果证明了所提改进策略在模型轻量化方面的有效性,为智能农业中的杂草管理提供了理论和技术支持。
关键词: 杂草识别;目标检测;YOLOv8;轻量化;注意力机制
中图分类号: TP391    文献标识码: A
基金项目: 国家自然科学基金(61905219);国家重点研发计划(2023YFD1401100);现代农业产业技术体系(CARS-01)
Lightweight Weed Detection Model Based on Improved YOLOv8
SHU Aijing, ZHANG Yanchao
(School of Inf ormation Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, China)
202130605274@mails.zstu.edu.cn; yczhang@zstu.edu.cn
Abstract: To meet the demands of intelligent agriculture and address common issues of low efficiency and insufficient reliability in weed detection, this paper proposes a lightweight high-performance weed detection model based on the improved YOLOv8 (You Only Look Once) algorithm. A novel lightweight C3Ghost (Cross Stage Partial Network) module is designed based on Ghost Conv (Ghost Convolution) to replace the C2f (CSPDarknet53 to 2-Stage FPN). Additionally, a Convolutional Block Attention Module (CBAM) is introduced in the Neck part of the model. By constructing a dedicated weed dataset to evaluate model performance, it is found that the improved model achieves a mAP-0.5 of 90.5% and a mAP-0.5: 0.9 of 54.4% in weed detection tasks. Compared with the officially released YOLOv8-s model, improvements of 0.8% and 0.3% are observed, while the number of the parameters of the improved model are reduced by 46.18% , and computational complexity is reduced by 42.81% . These results demonstrate the effectiveness of the proposed improvements in model lightweighting, providing theoretical and technical support for weed management in intelligent agriculture.
Keywords: weed identification; target detection; YOLOv8; lightweight; attention mechanism


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫