• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:陈天翔,何利力,郑军红.基于注意力机制的残差网络入侵检测模型[J].软件工程,2024,27(5):73-78.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于注意力机制的残差网络入侵检测模型
陈天翔1, 何利力1,2, 郑军红1,2
(1.浙江理工大学计算机科学与技术学院, 浙江 杭州 310018;
2.浙江省现代纺织技术创新中心, 浙江 绍兴 312000)
摘 要: 针对现有网络入侵检测技术存在的数据不平衡导致检测准确率不足、实时性差和泛化性能低等问题,对基于ResNet(深度残差网络)的入侵检测模型进行改进。在ResNet的每个Dense(全连接)层后添加自注意力层,形成残差连接,旨在通过捕捉长距离依赖关系增强特征表示能力,同时提升网络的学习能力、灵活性和解释性。使用CIC-IDS-2017数据集对新模型进行验证,结果显示,模型的准确率为97.56%,真正例率为97.46%,误报率为4.00%,损失函数值快速收敛至0.044。本文模型与其他文献模型相比,真正例率平均提升约5.62百分点,准确率平均提升约3.94百分点。
关键词: 网络入侵检测;深度学习;注意力机制;残差网络
中图分类号: TP393    文献标识码: A
基金项目: 浙江省重点研发"领雁"计划项目(2022C01238)
Residual Network Intrusion Detection Model Based on Attention Mechanism
CHEN Tianxiang1, HE Lili1,2, ZHENG Junhong1,2
(1.School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2.Zhejiang Provincial Innovat ion Center of Advanced Textile Technology, Shaoxing 312000, China)
Abstract: Aiming at the problems of insufficient detection accuracy, poor real-time performance, and low generalization performance caused by data imbalance in existing network intrusion detection technologies, this paper proposes to improve the intrusion detection model based on ResNet (Deep Residual Network). A self-attention layer is added after each Dense layer (fully connected layer) in ResNet to form residual connections, aiming to enhance feature representation ability by capturing long-distance dependencies, while improving the network ' s learning capability, flexibility, and interpretability. The proposed model is verified on the CIC-IDS-2017 dataset, and the results show that the model's accuracy is 97.56% , the true positive rate is 97.46% , the false alarm rate is 4.00% , and the loss function value quickly converges to 0. 044. Compared with other literature models, the proposed model improves the true positive rate by an average of about 5.62 percentage points, and the accuracy by an average of about 3.94 percentage points.
Keywords: network intrusion detection; deep learning; attention mechanism; residual network


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫