• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:高 媛,鲁曼曼,林 勇,谢 鹭.基于双模块卷积神经网络的TCR-多肽结合位点预测[J].软件工程,2024,27(5):51-55.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于双模块卷积神经网络的TCR-多肽结合位点预测
高 媛1,2, 鲁曼曼2, 林 勇1, 谢 鹭2
(1.上海理工大学健康科学与工程学院, 上海 200093;
2.上海市生物医药技术研究院上海市疾病与健康基因组学重点实验室, 上海 200237)
gaoyuan-99@qq.com; 15512468229@163.com; yong_lynn@163.com; xielu@sibpt.com
摘 要: TCR(T细胞受体)-多肽结合位点的准确预测对免疫治疗和相关药物发现具有重要意义。文章综合多个文献及数据库整理了一个TCR-多肽结合位点数据集,并引入了一种基于卷积神经网络的预测方法Propep-TCR。该方法综合考虑了输入TCR的序列特征和结构特征,通过采用残基可变滑动窗口方法提取每个目标残基的特征向量。为解决数据集中正负样本不平衡的问题,还采用了改进的损失函数和过采样技术。实验结果表明,Propep-TCR可以成功预测出TCR序列中的潜在结合位点,取得了优于传统算法的性能,其预测准确度达到0.98,AUROC达到了0.95。
关键词: 卷积神经网络;结合位点预测;TCR-多肽相互作用;深度学习
中图分类号: TP311.5    文献标识码: A
基金项目: 上海市卫生计生委协同创新集群研究项目(2019CXJQ02)
Prediction of TCR-peptide Binding Sites Based on Dual-Module Convolutional Neural Networ
GAO Yuan1,2, LU Manman2, LIN Yong1, XIE Lu2
(1.School of Health Science and Engineering, University of Shanghai f or Science and Technology, Shanghai 200093, China;
2.Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute f or Biomedical and Pharmaceutical Technologies, Shanghai 200237, China)
gaoyuan-99@qq.com; 15512468229@163.com; yong_lynn@163.com; xielu@sibpt.com
Abstract: Accurate prediction of TCR ( T Cell Receptor)-peptide binding sites is of great significance for immunotherapy and related drug discovery. This paper proposes to compile a TCR-peptide binding site dataset based on multiple literatures and databases, and introduce a prediction method Propep-TCR based on convolutional neural network. This method comprehensively considers the sequence and structural features of input TCR, and extracts the feature vector of each target residue using the residue-variable sliding window method. To address the issue of imbalanced positive and negative samples in the dataset, an improved loss function and oversampling technique are also employed. Experimental results show that Propep-TCR can successfully predict potential binding sites in TCR sequences, outperforming traditional algorithms with a prediction accuracy of 0.98 and an AUROC of 0.95.
Keywords: convolutional neural network; binding site prediction; TCR-peptide interaction; deep learning


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫