• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:彭来湖,刘旭东,万昌江.基于SOM-BP的全自动口罩机传动系统故障检测[J].软件工程,2024,27(5):39-44.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于SOM-BP的全自动口罩机传动系统故障检测
彭来湖1,2, 刘旭东1, 万昌江1,2
(1.浙江理工大学, 浙江 杭州 310000;
2.浙江理工大学龙港研究院, 浙江 温州 325000)
laihup@ zstu.edu.cn; 970960889@qq.com; wanchj@zstu.edu.cn
摘 要: 针对口罩机在多工序生产中故障特征难以诊断的问题,提出了一种基于自组织映射(SOM)和误差反向传播网络(BP)的故障检测模型。首先针对4种减速机故障类型搭建SOM-BP复合型神经网络模型并完成检测分类,其次通过提取原振动信号的20组时域和频域参数作为SOM网络的输入样本进行初步聚类,并根据仿真结果确定最佳竞争层结构,最后将聚类后结果输入BP网络进行预测并完成分类,实现故障检测。研究结果表明,7×7竞争层结构下的SOM-BP复合型神经网络对于减速机的8种时域和频域参数的检测效果最优,分类准确率可达93.5%,173次迭代即可收敛,数据拟合度最高达0.998 76,达到实际检测要求,验证了该方案的有效性和可行性。
关键词: 口罩机;自组织映射;BP神经网络;故障检测
中图分类号: TP206.3    文献标识码: A
基金项目: 浙江省科技计划项目2022C01065
Transmission System Fault Detection of Fully Automatic Mask Machine Based on SOM-BP
PENG Laihu1,2, LIU Xudong1, WAN Changjiang1,2
(1.Zhejiang Sci-Tech University, Hangzhou 310000, China;
2.Longgang Research Institute, Zhejiang Sci-Tech University, Wenzhou 325000, China)
laihup@ zstu.edu.cn; 970960889@qq.com; wanchj@zstu.edu.cn
Abstract: To address the difficulty in diagnosing fault characteristics in the multi-process production of mask machines, this paper proposes a fault detection model based on SOM-BP (SOM: Self-Organizing Map; BP: Error Back Propagation) network. Firstly, a SOM-BP composite neural network model is built for four types of gearbox faults to perform detection and classification. Secondly, 20 sets of time-domain and frequency-domain parameters extracted from the original vibration signals are used as input samples for the SOM network to conduct initial clustering. The optimal competitive layer structure is determined based on simulation results. Finally, the clustered results are input into the BP network for prediction and classification to achieve fault detection. Research results indicate that the SOM-BP composite neural network with the competitive layer structure shows the best detection performance for eight timedomain and frequency-domain parameters of the gearbox, achieving an accuracy rate of 93.5% . It converges after 173 iterations, with the highest data fitting degree of 0. 998 76, meeting the requirements of practical detection. This validates the effectiveness and feasibility of the proposed solution.
Keywords: mask machine; Self-Organizing Map; BP neural network; fault detection


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫