• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:祝巧巧,严云洋,冷志超,董 可,叶 翔,王盘龙.基于Fire-MCANet的火焰检测模型[J].软件工程,2024,27(4):38-42.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于Fire-MCANet的火焰检测模型
祝巧巧, 严云洋, 冷志超, 董 可, 叶 翔, 王盘龙
(淮阴工学院计算机与软件工程学院, 江苏 淮安 223003)
1546906478@qq.com; yunyang@hyit.edu.cn; 1067321462@qq.com; 1553789590@qq.com; 1528411799@qq.com; 905610658@qq.com
摘 要: 针对火焰检测参数量和计算量较大及准确度较低的问题,提出一种基于Fire-MCANet(Fire-Max Convolution Activate Networks)的火焰检测模型。该模型首先构建一种MCA(Max Convolution Activate)模块,使用大卷积核获取感受野,提高特征提取的能力;其次构建主干网络MCANet Block,在提升感受野的同时,降低模型的参数量和计算量;最后引入CA(Coordinate Attention)注意力机制获取火焰的位置信息。实验结果表明,基于Fire-MCANet的火焰模型的检测准确率达到95.75%,计算量仅有2.13 GMac;其网络模型的结构比ConvNeXt网络更加轻量化,检测效果也更好。
关键词: 火焰检测;深度学习;CA注意力机制;特征提取
中图分类号: TP391    文献标识码: A
Flame Detection Model Based on Fire-MCANet
ZHU Qiaoqiao, YAN Yunyang, LENG Zhichao, DONG Ke, YE Xiang, WANG Panlong
(Faculty of Computer & So f tware Engineering, Huaiyin Institute of Technology, Huaian 223003, China)
1546906478@qq.com; yunyang@hyit.edu.cn; 1067321462@qq.com; 1553789590@qq.com; 1528411799@qq.com; 905610658@qq.com
Abstract: Aiming at low accuracy of flame detection with large number of parameters and calculations, this paper proposes a flame detection model based on Fire-MCANet (Fire-Max Convolution Activate Networks). Firstly, a Max Convolution Activate (MCA) module is constructed to obtain the receptive field by using a large convolutional kernel to improve the ability of feature extraction. Secondly, the backbone network MCANet Block is constructed to improve the receptive field and reduce the number of parameters and calculations of the model. Finally, the CA (Coordinate Attention) attention mechanism is introduced to obtain the position information of the flame. The experimental results show that the detection accuracy of the flame detection model based on Fire-MCANet reaches 95.75% , and the computational amount is only 2.13 GMac. Its network model is lighter than the ConvNeXt network, and the detection effect is better.
Keywords: flame detection; deep learning; CA attention mechanism; feature extraction


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫