• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:纪 红,赵建印,陈 健,葛 睿.基于简化超体积的NSGA-Ⅱ算法[J].软件工程,2024,27(3):26-29.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于简化超体积的NSGA-Ⅱ算法
纪 红, 赵建印, 陈 健, 葛 睿
(海军航空大学, 山东 烟台 264001)
ytjihong@163.com; 13791182798@163.com; 57991949@qq.com; gr33995@126.com
摘 要: 针对NSGA-Ⅱ算法在高维多目标优化时选择压力较小,不适用于高维空间的问题,提出一种基于简化超体积的NSGA-Ⅱ算法,利用超体积在高维空间中可以准确评价个体优劣的特点,使用简化超体积代替拥挤距离对种群中的个体进行比较,在更新种群时保留收敛性和分布性更好的个体。通过与4个先进的、具有代表性的高维多目标进化算法(NSGA-Ⅲ、MOEA/DD、KnEA、RVEA)的对比实验表明,基于简化超体积的NSGA-Ⅱ算法在求解大多数测试函数时,获得了更优的解集,证明了该算法处理高维多目标优化问题的优越性能。
关键词: 高维多目标优化;进化算法;超体积
中图分类号: TP301    文献标识码: A
NSGA-Ⅱ Algorithm Based on Simplified Hypervolume
JI Hong, ZHAO Jianyin, CHEN Jian, GE Rui
(Naval Aviation University, Yantai 264001, China)
ytjihong@163.com; 13791182798@163.com; 57991949@qq.com; gr33995@126.com
Abstract: Aiming at the problem that the NSGA-Ⅱ algorithm has low selection pressure in many-objective optimization and is not suitable for high-dimensional space, this paper proposes a NSGA-Ⅱ algorithm based on simplified hypervolume. As hypervolume can accurately evaluate the advantages and disadvantages of individuals in high-dimensional space, individuals in the population are compared by simplified hypervolume instead of crowding distance, and individuals with better convergence and distribution are retained when updating the population. The comparative experiment with four many-objective evolutionary algorithms (NSGA-Ⅲ, MOEA/DD, KnEA, RVEA) shows that the proposed NSGA-Ⅱ algorithm based on simplified hypervolume achieves a better solution set when solving most test functions, which proves its excellent performance in handling many-objective optimization problems.
Keywords: many-objective optimization; evolutionary algorithm; hypervolume


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫