• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:王 俊,于爱荣.基于ConvLSTM 的南京地区共享单车需求预测研究[J].软件工程,2024,(2):55-59.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于ConvLSTM 的南京地区共享单车需求预测研究
王 俊1, 于爱荣2
(1.南京信息职业技术学院人工智能学院, 江苏 南京 210044;
2.中国人民解放军陆军工程大学指挥控制工程学院, 江苏 南京 211117)
intraweb@163.com; yu_alice@163.com
摘 要: 针对传统单车需求预测研究在处理不同地区无桩共享单车需求预测中存在的特征提取不精细和地区需求预测匹配度不精准等问题,在对南京地区两个自然年度、三类典型地区共享单车的使用需求数量、天气状态、季节周期等多类数据进行采集和特征工程的基础上,提出了一种兼顾时空序列的基于ConvLSTM(Convolutional Long Short Term Memory)深度学习预测模型,该模型通过卷积操作后能够提取数据中隐含的更多空间信息,将其应用于测试集中并与经典时序LSTM(长短期记忆网络)和CNN(卷积神经网络)进行对比发现,RMSE分别提升0.05和0.04,最大误差分别提升约0.86和0.3。
关键词: 共享单车;需求预测;深度学习;ConvLSTM;交通
中图分类号: TP183    文献标识码: A
基金项目: 江苏省科研计划(产业前瞻与关键核心技术)(BE2021086);南京信息职业技术学院高层次人才科研启动基金项目(YB20221502);工信行指委重点项目(GXHZWZ13058
Research on the Prediction of Shared Bicycle Demand in Nanjing Based on ConvLSTM
WANG Jun1, YU Airong2
(1.School of Artif icial Intelligence, Nanjing Vocational College of Inf ormation Technology, Nanjing 210044, China;
2.College of Command Control Engineer, Army Engineering University, Nanjing 211117, China)
intraweb@163.com; yu_alice@163.com
Abstract: In traditional shared bicycle demand prediction research, there are issues of imprecise feature extraction and inaccurate matching of regional demand prediction for predicting free floating shared bicycles in different regions. Aiming at these issues, this paper proposes a deep learning prediction model that takes into account the spatiotemporal sequences based on ConvLSTM (Convolutional Long Short Term Memory). The model is proposed on the basis of the collection and feature engineering of multiple types of data, such as the usage demand quantity, weather conditions, and seasonal cycles of shared bicycles in two natural years and three typical regions in Nanjing. This model can extract more spatial information hidden in the data after convolutional operations. Compared with the classical time-series LSTM network and CNN (Convolutional Neural Network), the RMSE of the test set improves by 0. 05 and 0. 04, respectively, and the maximum error improves by 0.86 and 0.3, respectively.
Keywords: shared bicycles; demand prediction; deep learning; ConvLSTM; traffic


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫