• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:季玉文,陈 哲.基于BERT的金融文本情感分析与应用[J].软件工程,2023,26(11):33-37.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于BERT的金融文本情感分析与应用
季玉文1, 陈 哲2
(1.浙江理工大学计算机科学与技术学院, 浙江 杭州 310018;
2.浙江理工大学信息科学与工程学院, 浙江 杭州 310018)
yuwen.ji.yan@foxmail.com; 18758099691@163.com
摘 要: 针对金融文本情感倾向模糊问题,设计了一种基于BERT(Bidirectional Encoder Representations from Transformers,基于Transformer的双向编码技术)和Bi-LSTM(Bidirectional Long Short-Term Memory Network,双向长短时记忆网络)的金融文本情感分析模型,以BERT模型构建词向量,利用全词掩盖方法,能够更好地表达语义信息。为搭建金融文本数据集,提出一种基于深度学习模型的主题爬虫,利用BERT+Bi-GRU(双门控循环单元)判断网页内文本主题相关性,以文本分类结果计算网页的主题相关度。实验结果表明:本文所设计的情感分析模型在做情感分析任务时取得了87.1%的准确率,能有效分析文本情感倾向。
关键词: 情感分析;主题爬虫;长短时记忆网络;预训练语言模型
中图分类号: TP391    文献标识码: A
Financial Text Sentiment Analysis and Application Based on BERT
JI Yuwen1, CHEN Zhe2
(1.School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2.School of Inf ormation Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China)
yuwen.ji.yan@foxmail.com; 18758099691@163.com
Abstract: Aiming at the problem of vague sentiment orientation in financial texts, this paper proposes to design a financial text sentiment analysis model based on BERT (Bidirectional Encoder Representations from Transformers) and Bi-LSTM(Bidirectional Long Short-Term Memory Network)is designed. The BERT model is used to construct word vectors, and the whole word masking method is employed to better express semantic information. To construct a financial text dataset, a theme crawler based on a deep learning model is proposed, which uses BERT + Bi-GRU (dual Gate Recurrent Unit) to determine the topic relevance of text within a webpage, and calculates the topic relevance of the webpage based on the text classification results. The experimental results show that the proposed sentiment analysis model achieves an accuracy of 87.1% when performing sentiment analysis tasks, and can effectively analyze text sentiment orientation.
Keywords: sentiment analysis; theme crawler; long short-term memory networks; pre-training language model


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫