• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:王耀宗,张易诚,康宇哲,沈 炜.基于改进卷积神经网络的图像数字识别方法研究[J].软件工程,2023,26(8):35-39.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进卷积神经网络的图像数字识别方法研究
王耀宗, 张易诚, 康宇哲, 沈 炜
(浙江理工大学计算机科学与技术学院, 浙江 杭州 310018)
781593022@qq.com; 1138263774@qq.com; kangyuzhe2018@gmail.com; latitude@126.com
摘 要: 针对试卷分数的统计问题,采用一种带有特殊分值框的试卷,并提出了一种基于改进卷积神经网络的识别统计方法。首先基于YOLO目标检测算法对分值框进行定位,并引入膨胀卷积模块丰富感受野、调整边框损失函数、提高收敛速度,然后基于ResNet卷积神经网络对分数进行识别,并融合注意力机制提高特征提取能力。实验结果表明,经改进的模型对1 000份试卷中题目分数的识别准确率为99.2%,可以准确、高效地识别试卷图像中的分数。
关键词: 目标检测;损失函数;ResNet;注意力机制;试卷分数识别
中图分类号: TP391    文献标识码: A
Research on Image Digital Recognition Method Based on Improved Convolutional Neural Network
WANG Yaozong, ZHANG Yicheng, KANG Yuzhe, SHEN Wei
(School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)
781593022@qq.com; 1138263774@qq.com; kangyuzhe2018@gmail.com; latitude@126.com
Abstract: Aiming at the statistical problem of test paper scores, this paper proposes a recognition statistics method based on improved convolutional neural network by using a test paper with a special score box. Firstly, the YOLO object detection algorithm is used to locate the score boxes, and the dilated convolutional module is introduced to enrich the receptive field and adjust the border loss function of the frame to improve the convergence rate. Then, the score is recognized based on ResNet convolutional neural network, and the attention mechanism is integrated to improve the feature extraction ability. The experimental results show that the improved model has a recognition accuracy of 99.2% for question scores in 1 000 test papers, and can accurately and efficiently recognize scores in test paper images.
Keywords: object detection; loss function; ResNet; attention mechanism; score recognition of test papers


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫