• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:祁 斌,张青波.振动能量收集中的动态效率优化神经网络算法应用[J].软件工程,2024,27(3):42-45.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
振动能量收集中的动态效率优化神经网络算法应用
祁 斌, 张青波
(浙江工商职业技术学院电子信息学院, 浙江 宁波 315010)
qibingood@gmail.com; 305372820@qq.com
摘 要: 动态效率优化神经网络算法(DEONN)的提出旨在提高振动能量收集设备的能量转换效率。DEONN利用深度学习技术,结合多层感知器架构,优化了发电机的关键组件(电枢、换向器、刷子、磁场及外壳)参数,提升了能量转换效率。开展实验实现该算法预测不同运行条件下的电机效率,具体为通过建立一个包含隐藏层的神经网络,输入转速、负载电阻和线圈数等特征,预测不同工况下的电机效率。实验结果表明,实测效率与预测效率具有高度一致性,预测效率为88.5%,验证了DEONN在预测发电机的转速、负载电阻和线圈数等关键性能参数方面的有效性。
关键词: 动态效率优化;神经网络;能量转换;发电机参数
中图分类号: TP391.41    文献标识码: A
基金项目: 国家自然科学基金(61871132).
Application of Dynamic Efficiency Optimization Neural Network Algorithm in Vibration Energy Collection
QI Bin, ZHANG Qingbo
(School of Electronic Inf ormation, Zhejiang Business Technology Institue, Ningbo 315010, China)
qibingood@gmail.com; 305372820@qq.com
Abstract: The proposal of Dynamic Efficiency Optimization Neural Network ( DEONN) algorithm aims to enhance energy conversion efficiency of vibration energy collection equipment. With deep learning technology and a multi-layer perceptron architecture, DEONN optimizes parameters of key components of the generator (armature, commutator, brush, magnetic field, and casing), improving energy conversion efficiency. Experiments are conducted to achieve the algorithm's prediction of motor efficiency under different operating conditions. Specifically, it is to establish a neural network containing hidden layers and input features such as rotational speed, load resistance, and coil count, to predict motor efficiency under different operating conditions. The experiment results show a high consistency between the actual efficiency and the predicted efficiency, with a predicted efficiency of 88.5% . This validates its effectiveness in predicting key performance parameters such as rotational speed, load resistance, and coil count.
Keywords: dynamic efficiency optimization; neural network; energy conversion; generator parameters


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫