• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:高新怡,陈 琦,陈冠宇,杨静怡,张坤坤,蔡华蕊.卷积神经网络在实时检测领域的研究[J].软件工程,2022,25(6):22-29.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
卷积神经网络在实时检测领域的研究
高新怡,陈 琦,陈冠宇,杨静怡,张坤坤,蔡华蕊
(天津商业大学,天津 300134)
1275475886@qq.com; chq687002@163.com; 2920734342@qq.com; 2385333215@qq.com; 2529207862@qq.com; 1431502854@qq.com
摘 要: 提出轻量模型Mini Net用于实时检测,并保证其准确度。Mini Lower利用Group卷积与通道合并提取低阶特微,Mini Higher利用可分离的Depthwise卷积提取高阶特微。Mini模块实现的高效卷积使其大幅减少了参数量与计算量,并且在空间维度上引入更多层次所带来的非线性,可提升模块的提取能力。另外,在模型中利用更精细的特微搭配多尺度预测改善小目标检测。基于一系列的消融实验验证Mini模块设计的有效性,并透过对照实验结果证实MiniNet模型的实时性优于全卷积模型,在参数量仅有0.92×106的情况下,能够有效地提取目标特微。
关键词: 卷积神经网络;轻量模型;目标检测;图像识别
中图分类号: TP311    文献标识码: A
基金项目: 天津市大学生创新创业训练计划项目(202110069073).
Research on Convolutional Neural Networks in Real-time Detection
GAO Xinyi, CHEN Qi, CHEN Guanyu, YANG Jingyi, ZHANG Kunkun,CAI Huarui
(Tianjin University of Commerce, Tianjin 300134, China)
1275475886@qq.com; chq687002@163.com; 2920734342@qq.com; 2385333215@qq.com; 2529207862@qq.com; 1431502854@qq.com
Abstract: This paper proposes a lightweight model Mini Net for real-time detection and its accuracy is guaranteed. Mini Lower uses Group convolution and channel merging to extract low-order micros, while Mini Higher uses separable Depthwise convolutions to extract high-order micros. The efficient convolution implemented by the Mini module greatly reduces the amount of parameters and computation, and the nonlinearity brought by more layers in the space dimension is introduced, which can improve the extracting ability of the module. In addition, a combination of a finer micro and multi-scale prediction is used in the model to improve small object detection. Based on a series of ablation experiments, the effectiveness of the Mini module design is verified, and the comparative experimental results very that the real-time performance of the Mini Net model is better than that of the full convolution model. When the parameter amount is only 0.92×106, the target micro can be extracted effectively.
Keywords: convolutional neural network; lightweight model; object detection; image recognition


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫