• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:王昊飞,李俊峰.基于注意力机制的改进残差网络的人体行为识别方法[J].软件工程,2021,24(11):51-54.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于注意力机制的改进残差网络的人体行为识别方法
王昊飞,李俊峰
(浙江理工大学机械与自动控制学院,浙江 杭州 310018)
haofeiwang@yeah.net; ljf2003zz@163.com
摘 要: 针对ResNeXt网络(残差网络)中存在的对特征提取不充分,以及数据集中背景信息干扰的问题,将ResNeXt网络和注意力机制相结合,提出了一种基于注意力机制的ResNeXt模型。首先,在ResNeXt网络的基础上,将浅层和深层的特征融合生成新型网络结构。其次,将全连接层由全局平均池化层替代,然后在通道空间注意力机制中添加一个条件因子,同时将改进后的注意力机制嵌入上述网络中。最后,在UCF101和HMDB51上分别进行实验,得到了95.2%和65.6%的准确率。研究表明,本文提出的模型可以有效地提取关键特征,充分利用不同层次的特征信息获得较好的准确率。
关键词: 人体行为识别;注意力机制;ResNeXt;全局平均池化
中图分类号: TP183    文献标识码: A
Human Action Recognition Method based on Attention Mechanism and Improved ResNeXt Network
WANG Haofei, LI Junfeng
(Faculty of Mechanical Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China)
haofeiwang@yeah.net; ljf2003zz@163.com
Abstract: Aiming at problems of insufficient feature extraction in ResNeXt network and background information interference in the dataset, this paper proposes a ResNeXt model based on attention mechanism, which combines the ResNeXt network and attention mechanism. First, based on ResNeXt network, shallow and deep features are merged to generate a new network structure. Second, the fully connected layer is replaced by a global average pooling layer. Then channel attention mechanism is improved by adding a condition factor. At the same time, the improved attention mechanism is embedded in the above-mentioned network. Finally, experiments are performed on UCF101 and HMDB51 respectively, and the accuracy rates of 95.2% and 65.6% are obtained. Experiments show that the proposed model can effectively extract key features, and make full use of feature information of different layers to achieve better accuracy.
Keywords: human action recognition; attention mechanism; ResNeXt network; global average pooling


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫