• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:马斯宇,刘德山,闫德勤,丁一民.基于判别信息的复合核极限学习机算法[J].软件工程,2021,24(9):32-37.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于判别信息的复合核极限学习机算法
马斯宇,刘德山,闫德勤,丁一民
(辽宁师范大学计算机与信息技术学院,辽宁 大连 116081)
MasiyuV@163.com; deshanliu@yeah.net; yandeqin@163.com; 18340817981@163.com
摘 要: 高光谱图像包含光谱和空间信息,这增加了其在分类与识别方面的难度。特征学习作为高光谱图像分类技术之一,能较好地提取图像中包含的特征。针对经典极限学习机算法难以较好地提取光谱特征,引入特征学习技术,提出了一种基于判别信息的复合核极限学习机(CKELM-L)方法。CKELM-L通过最大化类间矩阵与最小化类内矩阵,使投影后的低维数据同类越近而异类越远。实验结果表明,所提方法保留了更好的光谱特征,计算复杂度低且实现了出色的可分离性。
关键词: 极限学习机;高光谱图像分类;线性判别分析;特征学习
中图分类号: TP391    文献标识码: A
基金项目: 国家自然科学基金项目(61772250);辽宁省自然科学基金(20170540574);辽宁省教育厅科学研究项目(LJ2019014).
Composite Kernel Extreme Learning Machine Algorithm based on Discriminant Information
MA Siyu, LIU Deshan, YAN Deqin, DING Yimin
(School of Computer and Information Technology, Liaoning Normal University, Dalian 116081, China)
MasiyuV@163.com; deshanliu@yeah.net; yandeqin@163.com; 18340817981@163.com
Abstract: Hyperspectral images contain spectral and spatial information, which increases the difficulty of classification and recognition. Feature learning, as one of the hyperspectral image classification techniques, can better extract features contained in the image. Aiming at the difficulty of classical extreme learning machine algorithms in extracting spectral features, this paper introduced feature learning technology, and proposes a composite kernel extreme learning machine(CKELM-L) method based on discriminant information. CKELM-L maximizes the between-class matrix and minimizes the intra-class matrix, so that the projected low-dimensional data is closer to the same class and farther away from the different class. Experimental results show that the proposed method retains better spectral features, low computational complexity and achieves excellent separability.
Keywords: extreme learning machine; hyperspectral image classification; linear discriminant analysis; feature learning


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫