• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:常鈺迪.基于稀疏逻辑回归的链接模型在分类问题的应用[J].软件工程,2021,24(6):2-5.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于稀疏逻辑回归的链接模型在分类问题的应用
常鈺迪
(浙江理工大学,浙江 杭州 310018)
2330920634@qq.com
摘 要: 随着科技的发展,数据分类问题应用在生活的多个方面,然而在面对庞大的数据时,往往采用压缩过的 稀疏数据,这就为分类模型的发展带来了极大的挑战。为了提高稀疏数据分类的准确性和正确率,提出了基于稀疏逻 辑回归的链接神经网络模型,由此构建成可靠的分类模型。以两类数据作为研究对象,首先进行数据预处理,再提取出 数据特征对其进行分类。研究结果表明,分类模型不仅可以应用于稀疏数据,而且正确率较神经网络模型的结果有所提 升,手写字的正确率从90.1%提高到94.86%,声音分类的正确率从70.3%提高到74.4%,证实该模型有效。
关键词: 逻辑回归;稀疏性;神经网络;多分类
中图分类号: TP391    文献标识码: A
Application of Link Model based on Sparse Logistic Regression in Classification Problem
CHANG Yudi
( Zhejiang Sci -Tech University, Hangzhou 310018, China)

2330920634@qq.com
Abstract: With the development of science and technology, data classification is applied in many aspects of life. However, when facing huge data, compressed sparse data is often used, which brings great challenges to the development of classification models. In order to improve the precision and accuracy of sparse data classification, this paper proposes a link neural network model based on sparse logistic regression, so to build a reliable classification model. Taking two types of data as research object, data is preprocessed first, and then data features are extracted to classify them. The research results show that the classification model proposed in this paper can not only be applied to sparse data, but the accuracy is improved compared with the results of the neural network model. Accuracy of handwriting has increased from 90.1% to 94.86%, and accuracy of sound classification has increased from 70.3% to 74.4%, which proves that the model is effective.
Keywords: logistic regression; sparsity; neural network; multi-classification


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫