• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:刘苗苗,蒋 艳.基于改进多层感知机模型的港口吞吐量预测研究[J].软件工程,2021,24(3):39-42.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进多层感知机模型的港口吞吐量预测研究
刘苗苗,蒋 艳
(上海理工大学管理学院,上海 200093)
192560916@st.usst.edu.cn; ppjyan@163.com
摘 要: 精确的港口货物吞吐量预测对于港口的发展至关重要。本文提出了改进粒子群优化去尾均值多层感知机模型对上海港货物吞吐量进行预测。选取了影响上海港货物吞吐量的十个因素进行训练,实验结果表明该预测模型的预测性能明显优于传统MLP预测模型和基本的粒子群优化多层感知机模型。对该预测模型的误差分析和收敛性分析表明该预测模型可靠。
关键词: 粒子群算法;去尾均值;多层感知机;港口吞吐量预测
中图分类号: TP183    文献标识码: A
Research on Port Throughput Forecast based on Improved Multilayer Perceptron Model
LIU Miaomiao, JIANG Yan
(Business School, University of Shanghai for Science and Technology, Shanghai 200093, China )
192560916@st.usst.edu.cn; ppjyan@163.com
Abstract: Accurate port cargo throughput forecast is vital to port development. This paper proposes an improved particle swarm optimization model of multilayer perceptron (MLP) with trimmed mean to predict the cargo throughput of Shanghai Port. Ten factors that affect cargo throughput of Shanghai Port are selected for training. The experimental results show that prediction performance of the proposed prediction model is significantly better than traditional MLP prediction model and basic particle swarm optimization multi-layer perceptron model. Error and convergence analyses of the prediction model show that the prediction model is reliable.
Keywords: particle swarm algorithm; trimmed mean; multilayer perceptron; port throughput forecast


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫