• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:朱 诚.基于鲸优化算法的自导航机器人路径规划研究[J].软件工程,2020,23(12):7-11.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于鲸优化算法的自导航机器人路径规划研究
朱 诚
(天津商业大学信息工程学院,天津 300134)
zhucheng@tjcu.edu.cn
摘 要: 自导航机器人(Automated Guided Vehicle,AGV)是现代产业不可或缺的重要组成部分。本文对AGV路径规划算法进行研究和设计。首先,采用栅格法对AGV运行环境建模,并制定约束规则以解决多AGV的冲突问题。其次,引入双非线性收敛因子和强制驱散机制对经典WOA进行改进。再次,定义适应度函数,并将改进的WOA应用于路径规划算法。仿真和实验结果表明,基于改进WOA的规划算法能够有效简化路径复杂度、降低机器人控制难度。
关键词: 群智能算法;鲸优化算法;自导航机器人;路径规划
中图分类号: TP391    文献标识码: A
基金项目: 天津市企业科技特派员项目(19JCTPJC52300);教育部产学合作协同育人项目(201901198040);天津市虚拟仿真实验教学建设项目资助.
Research on Path Planning of Automatic Guided Vehicle based on Whale Optimization Algorithm
ZHU Cheng
(School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China)
zhucheng@tjcu.edu.cn
Abstract: Automated Guided Vehicle (AGV) is an indispensable part of modern industry. This paper considers the AGV path planning algorithm. First, the grid method is used to model the AGV operating environment, and constraint rules are formulated to solve the conflict problem of multiple AGVs. Secondly, dual nonlinear convergence factors and forced dispersal mechanism are introduced to improve the classic Whale Optimization Algorithm (WOA). Third, we define the fitness function and apply the improved WOA to the path planning algorithm. Simulation and experimental results show that the planning algorithm based on improved WOA can effectively simplify the path complexity and reduce the difficulty of robot control.
Keywords: swarm intelligence algorithm; whale optimization algorithm; automatic guided vehicle; path planning


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫