• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:马兴民,张 勇.基于混沌粒子群支持向量机的电子战无人机作战效能评估[J].软件工程,2020,23(12):1-3.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于混沌粒子群支持向量机的电子战无人机作战效能评估
马兴民, 张 勇
(华北计算技术研究所系统二部,北京 100083)
maxingmin1983@163.com; 576156365@qq.com
摘 要: 电子战无人机的作战效能评估在未来智能网信体系作中具有重要意义。针对电子战无人机作战效能评估过程中影响因素复杂、小样本、非线性等问题,引入了支持向量机算法,为了提高评估的效率和有效性,引入具有较强伪随机性、自身规律性的混沌系统对粒子群初始粒子进行了优化,然后利用混沌粒子群对支持向量机的参数进行了优选,提高了整体评估效率。仿真实验结果表明混沌粒子群-支持向量机模型可以准确地对电子战无人机进行作战效能评估,具有较好的计算精度。
关键词: 电子战无人机;作战效能评估;混沌粒子群;支持向量机
中图分类号: TP301    文献标识码: A
Operational Effectiveness Evaluation of Electronic Warfare UAV based on Chaotic Particle Swarm Optimization Support Vector Machine
MA Xingmin, ZHANG Yong
(System Second Department, North China Institute of Computing Technology, Beijing 100083, China )
maxingmin1983@163.com; 576156365@qq.com
Abstract: The combat effectiveness evaluation of electronic warfare UAVs is of great significance in the future intelligent network information system. Aiming at the existing problems of complex influencing factors, small samples, and nonlinearity, the support vector machine algorithm is considered. In order to improve the efficiency and effectiveness of the evaluation, strong pseudo-random and self-regularity chaotic system firstly optimizes initial particles of the particle swarm, and then uses the chaotic particle swarm to optimize the parameters of the support vector machine, which improved the overall evaluation efficiency. The simulation experiment results show that the chaotic particle swarm-support vector machine model can accurately evaluate the combat effectiveness of electronic warfare UAVs, and has good calculation accuracy.
Keywords: electronic warfare UAV; combat effectiveness evaluation; chaotic particle swarm; support vector machine


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫