• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:马守明,郑 武,程 晨,周祎.基于改进SOM模型的高校学生学习过程评价研究[J].软件工程,2020,23(5):50-52.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进SOM模型的高校学生学习过程评价研究
马守明,郑 武,程 晨,周 祎
(金陵科技学院网络与通信工程学院,江苏 南京 211169)
mashouming@jit.edu.cn; zhengwu@jit.edu.cn; ngchen@jit.edu.cn; monday9086@jit.edu.cn
摘 要: 对高校学生学习过程进行准确的评价,是提升学生学习效率、改进教师教学方法、完善学校教学管理的 重要环节。目前已经提出了多种数学模型来解决该问题,但这些方法均需要一定的先验知识且难以实现自学习。本文利 用SOM模型能在无监督、无先验知识的状态下对样本进行自组织的特性进行学习过程的评价,同时通过主成分分析, 提高了网络收敛速度和聚类准确性。实例分析表明:改进SOM模型能有效地进行学生学习过程的评价。
关键词: SOM模型;学习评价;聚类分析;主成分分析
中图分类号: TP183    文献标识码: A
Study on the Evaluation of College Students' Learning Process Based on Improved SOM Model
MA Shouming, ZHENG Wu, CHENG Chen, ZHOU Yi
(School of Networks & Telecommunications Engineering, Jinling Institute of Technology, Nanjing 211169, China )
mashouming@jit.edu.cn; zhengwu@jit.edu.cn; ngchen@jit.edu.cn; monday9086@jit.edu.cn
Abstract: The accurate evaluation of the learning process of college students is an important link in the improvement of students' learning efficiency, teachers' teaching methods and school teaching management. The existing evaluation methods of learning process mostly rely on accurate mathematical models, which cannot realize self-learning. In this paper, the SOM (Self Organizing Maps) model was used to evaluate the learning process of samples in an unsupervised state without prior knowledge. Meanwhile, through PCA (principal component analysis) algorithm, the convergence speed and clustering accuracy of the network can be improved. The case analysis shows that the improved SOM model can effectively evaluate students' learning process.
Keywords: SOM model; learning evaluation; cluster analysis; principal component analysis


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫