• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:吕 刚,张 伟.基于深度学习的推荐系统应用综述[J].软件工程,2020,23(2):5-8.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于深度学习的推荐系统应用综述
吕 刚,张 伟
(哈尔滨师范大学计算机科学与信息工程学院,黑龙江 哈尔滨 150025)
摘 要: 随着互联网上信息量呈指数增长,用户从大量信息中挑选目标信息变成了一种复杂且耗时的作业。为用 户解决因信息量爆炸而不能快速获得目标信息的方法就是构建推荐系统。深度学习作为当前热门的研究话题,在许多领 域都取得了突破性的成就。利用深度学习挖掘用户和物品的隐含属性,构建用户和物品的关系模型,可以提高个性化推 荐的精确度。本文介绍了推荐系统和深度学习,分析了深度学习在推荐领域的应用现状并做出了展望。
关键词: 推荐系统;深度学习;协同过滤;内容推荐
中图分类号: TP301    文献标识码: A
Survey of Deep Learning Applied in Recommendation System
LV Gang,ZHANG Wei
( College of Computer Science and Information Engineering, Harbin Normal University, Harbin 150025, China)
Abstract: With the exponential growth of information on the Internet,it becomes a complicated and time-consuming task for users to select target information from a large amount of information.The way for users to solve the problem of not being able to quickly obtain target information due to the explosion of information is to construct Recommended system.As a hot research topic,researches of deep learning have made breakthrough achievements in many fields.Using deep learning to mine the hidden attributes of users and items,and building a relationship model between users and items can improve the accuracy of personalized recommendations.This paper introduces the recommendation system and deep learning,then analyzes the current status of application of deep learning in the recommendation field, and provides research prospects.
Keywords: recommendation system;deep learning;collaborative filtering;content-based recommendation


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫