• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:徐子锋,石 超,王永锋,陈 龙.基于ORB+PROSAC误匹配剔除算法的视觉SLAM研究[J].软件工程,2019,22(5):9-14.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于ORB+PROSAC误匹配剔除算法的视觉SLAM研究
徐子锋,石 超,王永锋,陈 龙
(上海理工大学机械工程学院,上海 200093)
摘 要: 在视觉SLAM前端特征点匹配过程中,采用RANSAC算法剔除误匹配特征点存在迭代次数不稳定、 效率低、鲁棒相差等问题,从而对相机定位产生影响。与ORB算法结合,本文引入一种渐进采样一致性算法,即 PROSAC(Progressive Sampling Consensus),来消除迭代次数不稳定问题。利用Kinect v2相机对改进的RGB-D SLAM算法进行实验,获得三维点云地图和相机轨迹,实现了ORB+PROSAC的误匹配剔除算法。与ORB+RANSAC的 结合方式相对比,本文算法验证鲁棒性更好,实时性更强。
关键词: 视觉SLAM;特征点匹配;RANSAC算法;PROSAC算法
中图分类号: TP391.4    文献标识码: A
A Study of Visual SLAM Based on ORB+PROSAC Mismatch Elimination Algorithm
XU Zifeng,SHI Chao,WANG Yongfeng,CHEN Long
( College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
Abstract: In the process of feature point matching in the front of visual SLAM,a series of problems have been found when using the RANSAC algorithm to eliminate the mismatched feature points,such as unstable iterations,low efficiency and robust phase difference,resulting in an impact on camera positioning.Combined with the ORB algorithm,this paper introduces a progressive sampling consensus algorithm,PROSAC (Progressive Sampling Consensus),to eliminate the instability of iteration times.Using the Kinect v2 camera with the improved RGB-D SLAM algorithm,the 3D point cloud map and camera trajectory can be obtained in the experiment and the mismatch elimination algorithm of ORB+PROSAC can be realized. Compared with the combination with ORB+RANSAC,the proposed algorithm verifies the robustness better with a stronger real-time performance.
Keywords: visual SLAM;feature point matching;RANSAC algorithm;PROSAC algorithm


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫