• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:周春樵,肖昌昊,刘 扬,姚安琪,黄君扬.基于影响域的新型众包定价算法模型构建[J].软件工程,2018,21(5):4-7.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于影响域的新型众包定价算法模型构建
周春樵,肖昌昊,刘 扬,姚安琪,黄君扬1,2,3
1.(1.上海理工大学计算中心,上海 200093;2.
2.上海理工大学能源与动力工程学院,上海 200093;3.
3.上海理工大学光电信息与计算机工程学院,上海 200093)
摘 要: “众包”已成为时下新兴的一种基于互联网进行信息检查和搜集的商业模式,其成功率取决于诸多因素 的影响,其中最大的影响因素为任务发布者的出价。针对此问题,本文提出了一种基于“影响域”的新型众包定价策 略,该策略以经济学中的供求关系模型为建模方法,利用任务与劳动者的地理位置分布规律动态定价,同时,对新数据 与原始数据进行相似性分析,通过机器学习模拟任务的完成概率,从而评价定价策略的优劣。本文以“拍照赚钱”自助 式服务模式作为研究样本;在利用影响域定价模型重新定价后,经济效用较原始方案增长80.65%,效果良好。
关键词: 众包;影响域;供求关系;标准化欧氏距离;机器学习
中图分类号: TP301    文献标识码: A
Research on New Pricing Strategy Based on Domain-of-Influence
ZHOU Chunqiao,XIAO Changhao,LIU Yang,YAO Anqi,HUANG Junyang1,2,3
1.( 1.Computer Center, University of Shanghai for Science &Technology, Shanghai 200093, China;2.
2.School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;3.
3.School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
Abstract: Crowdsourcing has become a new business model nowadays.It not only makes human knowledge and wisdom improved and disseminated infinitely,but also creates amazing social wealth.However,the success rate of crowdsourcing missions depends on a number of factors,among which the most important one is the bid given by mission publishers.In this paper,a new pricing strategy based on domain-of-influence is proposed,which uses the geographical distribution of missions and the employees to price dynamically,then readjusts the size of the affected domain for an iterative calculation until the pricing result is stable.In addition,this paper establishes a mathematical model to simulate the probability of completion of a mission,which is used to test the merits of the pricing strategy based on domain-of-influence.This paper takes the self-service model of Photographing for Money as the study subject and the financial rewards have increased by 80.65% after repricing by means of domain-of-influence compared with the previous pricing method.
Keywords: crowdsourcing;domain-of-influence;supply-demand relationship;standardized Euclidean distance;machine learning


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫