• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:曹 檑,莫雅婷,黄 晨,魏子涵.基于深度卷积网络的人脸年龄分析算法与实现[J].软件工程,2016,19(8):14-18.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于深度卷积网络的人脸年龄分析算法与实现
曹 檑,莫雅婷,黄 晨,魏子涵
(南京理工大学计算机科学与工程学院,江苏 南京 210094)
摘 要: 作为一种新兴的生物特征识别技术,基于人脸图像的年龄估计技术在目前已经成为计算机视觉、人机交互 等领域的一个重要研究课题。2006年以来,深度卷积网络在图像识别、语音识别和自然语言处理等领域广泛使用,取得 了很好的效果。本文基于深度卷积网络的人脸年龄分析算法,构建一个多层卷积神经网络,通过卷积神经网络获取深度 卷积激活特征,作为人脸年龄估计的特征,并利用支持向量机(SVM)的方法训练年龄估计模型,得到年龄估计结果,在 人脸识别权威数据集Morph上获得了91.3%的正确率,同时也对比在了不同条件下对实验结果的影响。
关键词: 深度学习;卷积神经网络;年龄估计
中图分类号: TP301    文献标识码: A
基金项目: 南京理工大学本科生科研训练“百千万”计划国家级项目资助,编号:201510288041.
Algorithm and Implementation of Age Estimation from Facial Images Based on Deep Convolutional Neural Network
CAO Lei,MO Yating,HUANG Chen,WEI Zihan
(Nanjing University of Science and Technology, Nanjing 210094, China)
Abstract: As an emerging biometric technology,the age estimation based on facial images has become an important research topic in the field of computer vision,human computer interaction,etc.Since 2006,Deep Convolutional Neural Network has been widely used and obtained good effects in the field of image recognition,speech recognition,natural language processing,etc..In age estimation algorithm based on Deep Convolutional Neural Network,the paper constructs a multilayered convolutional neural network.Taking the deep convolutional activation features as the facial distinctions of age estimation, the paper applies Support Vector Machine(SVM) to train the age estimation model and acquire estimation results. The algorithm has obtained 91.3% accuracy in Morph,the authoritative facial recognition dataset.Meanwhile,the experiment results in different conditions have been compared.
Keywords: deep learning;convolutional neural network;age estimation


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫